Página 43 - Libro de Matemática de Décimo Grado
Leyes de Morgan
Resolución Página 43 - Libro de Matemática de Décimo Grado
Datos para la resolución:
Un número primo tiene exactamente dos divisores: 1 y él mismo. Revisa uno por uno los números del 1 al 10 y anota solo los que cumplan esta condición.
Explicación
Análisis del problema: Debemos identificar qué números entre 1 y 10 son primos.
Resolución paso a paso:
- Recordamos que un número primo solo tiene dos divisores positivos: 1 y él mismo.
- Verificamos cada número del 1 al 10:
1 (no es primo), 2 (primo), 3 (primo), 4 (no), 5 (primo), 6 (no), 7 (primo), 8 (no), 9 (no), 10 (no).
Conclusión / Respuesta final:
Evento A = {2, 3, 5, 7}
Datos para la resolución:
"Menor o igual que 5" incluye al 5 mismo. Enumera los números desde 1 y detente cuando llegues al 5.
Explicación
Análisis del problema: Necesitamos todos los números del 1 al 10 que sean ≤ 5.
Resolución paso a paso:
- Listamos los números del 1 al 10.
- Seleccionamos los que cumplen la condición ≤5: 1, 2, 3, 4 y 5.
Conclusión / Respuesta final:
Evento B = {1, 2, 3, 4, 5}
Datos para la resolución:
Se trata de una intersección de condiciones (y). Primero escribe cada conjunto; luego conserva los números que están en los dos.
Explicación
Análisis del problema: Buscamos números que sean simultáneamente primos y ≤5.
Resolución paso a paso:
- A partir del Evento A: {2, 3, 5, 7}.
- A partir del Evento B: {1, 2, 3, 4, 5}.
- Tomamos los elementos que aparecen en ambos conjuntos:
{2, 3, 5}.
Conclusión / Respuesta final:
Evento primo ∧ ≤5 = {2, 3, 5}
Datos para la resolución:
Para la unión basta con listar todos los elementos de A y añadir los de B que no estén repetidos.
Explicación
Análisis del problema: La unión A ∪ B reúne todos los elementos que están en A, en B o en ambos.
Resolución paso a paso:
- Evento A = {2, 3, 5, 7}
- Evento B = {1, 2, 3, 4, 5}
- Unimos sin repetir:
{1, 2, 3, 4, 5, 7}
Conclusión / Respuesta final:
$$A\cup B = \{1,\,2,\,3,\,4,\,5,\,7\}$$
Datos para la resolución:
En la intersección debes comprobar qué valores aparecen tanto en A como en B; el resto se descarta.
Explicación
Análisis del problema: La intersección A ∩ B contiene solo los elementos comunes a ambos eventos.
Resolución paso a paso:
- Evento A = {2, 3, 5, 7}
- Evento B = {1, 2, 3, 4, 5}
- Elementos comunes: 2, 3 y 5.
Conclusión / Respuesta final:
$$A\cap B = \{2,\,3,\,5\}$$
Datos para la resolución:
Puedes pensar en aplicaciones cotidianas: juegos de azar, predicciones de eventos, porcentajes en encuestas, etc. Relaciona el contenido con ejemplos reales para responder.
Explicación
Lo aprendido te ayuda a comprender y calcular probabilidades simples mediante el uso de conjuntos, algo fundamental para tomar decisiones informadas en situaciones de azar, estadísticas y análisis de datos.
Datos para la resolución:
Reflexiona sobre tu proceso: ¿tomaste apuntes?, ¿hiciste ejemplos?, ¿usaste gráficos de Venn?, ¿trabajaste con un compañero? Describe los pasos que te funcionaron.
Explicación
Aprendí identificando propiedades numéricas (números primos, rangos) y aplicando operaciones de conjuntos (unión e intersección) mientras resolvía ejercicios prácticos.
Datos para la resolución:
Piensa en los momentos en los que te detuviste más tiempo o buscaste ayuda. Señalar esas dificultades te permitirá mejorar tus estrategias de estudio.
Explicación
La parte más retadora fue diferenciar cuándo usar la unión (ó) y la intersección (y), especialmente al interpretar la redacción de los eventos.
Datos para la resolución:
Resume los conceptos clave y menciona brevemente cada habilidad o conocimiento nuevo que adquiriste. Esto solidifica tu aprendizaje.
Explicación
Aprendí a:
- Reconocer números primos del 1 al 10.
- Formar eventos y sus puntos muestrales.
- Aplicar la unión y la intersección de conjuntos para describir eventos compuestos.
Contenido Página 43 - Libro de Matemática de Décimo Grado
Experimento de selección de fichas
Rodolfo considera el experimento de elegir al azar una ficha de una urna, donde hay diez fichas numeradas del 1 al 10.
Determino los puntos muestrales de la ficha, teniendo en cuenta que debe obtener un número primo y menor o igual que 5.
Evento A :
...
Evento B :
...
Evento: Obtener un número primo y menor o igual que 5.
...
A ó B =
...
Evento: Obtener un número primo y menor o igual que 5.
...
A y B =
...
METACOGNICIÓN
- ¿Para qué me sirve lo aprendido?
- ¿Cómo aprendí?
- ¿Qué me costó más aprender?
- ¿Qué aprendí?